

LMC, perché rinviare il trapianto

Gianantonio Rosti, MD Scientific Direction IRCCS/SIRHHC Scientific Institute for Research, Hospitalization and Health Care «Dino Amadori» – Meldola (FC), Italy

PERSPECTIVE OPEN Questions concerning tyrosine kinase-inhibitor therapy and transplants in chronic phase chronic myeloid leukaemia

Michele Baccarani $1^{2,7}$, Francesca Bonifazi 1^{2} , Simona Soverini 2^{7} , Fausto Castagnetti^{1,2}, Gabriele Gugliotta¹, Wael Saber^{3,4}, Noel Estrada-Merly³, Gianantonio Rosti⁵ and Robert Peter Gale 6^{6}

© The Author(s) 2022

«We suggest transplants should be more often considered in the metric when counseling people with CML»

«The question of who should receive a transplant in CP is complex and controversial.»

Marrow Transplantation for the Treatment of Chronic Myelogenous Leukemia, ED Thomas et al , Annals of Internal Medicine 1986; Vol 104, Number 2

OS & Disease phase (50% OS in CP) and age (increased TRM in older)

CML main indication for AlloSCT until

1999 STI571 Signal Transductor Inhibitor

STI571 Stop Transplant Immediately

Number of allogeneic transplants, by disease, registered with CIBMTR 1998-2008

2024 STI571 Some Transplants Indicated

« Today, we are on the opposite side of the spectrum, and physicians and **patients often wait too long to transplant...** hoping that the "N +1"h TKI will magically eliminate resistance and/or intolerance where other TKIs have persistently failed.

However, hope is not a plan.

Thus, it is reasonable to at least begin preparing for the possibility of transplant «

J. Radich, Am J Hematol 2023; 98:4-5

Recipient Age of Allogeneic HCTs in the US

HEMATOLOGY

CML 1st CP, allo-SCT outcomes

Study ¹	Registry	interval	N	Median age	Conditioning	Donor	1-year survival	5-year survival	10-year survival
Millot et al. ²	SGFMTC	1982–1998	42	14	MA	REL	87%	73%	73%
Cwynarski et al. ³	EBMT	1985–2001	156	14	NR	REL	78%	72%	70%
Arora et al. ⁴	CIBMTR	1988–2003	3514	36	MA	REL	74%	63%	60%
Arora et al. ⁴	CIBMTR	1988–2003	531	37	MA	UNR	70%	55%	50%
Radich et al. ⁵	Seattle	1995–2000	131	43	MA	REL	91%	NA	NA
Gratwohl et al. ⁶	German Study III	1997–2004	151	38	MA	REL	90%	78%	76%
Gratwohl et al. ⁶	German Study III	1997–2004	148	41	MA	UNR	97%	76%	76%
Bacher et al. ⁷	German Registry	1998–2004	1084	40	MA 62%	REL 61%	67%	64%	64%
Ohashi et al. ⁸	Japanese Registry	2000–2009	531	40	MA 89%	UNR 51%	87%	85%	78%
Chaudury et al. ⁹	CIBMTR	2001–2010	224	24	MA	REL	90%	83%	NA
Chaudury et al. ⁹	CIBMTR	2001–2010	225	24	MA	UNR	80%	68%	NA
Lee et al. ¹⁰	Korean	2001–2012	47	32	MA 77%	UNR 43%	88%	NA	NA
Lee et al. ¹⁰	Korean	2001–2012	50	33	MA 48%	UNR 42%	90%	NA	NA
Koenecke et al. ¹¹	EBMT	2002–2005	193	31	MA	REL	90%	85%	84%
Saussele et al. ¹²	German Study IV	2003–2008	19	35	MA 79%	REL 53%	95%	NA	NA
Saussele et al. ¹²	German Study IV	2003–2008	37	38	MA 65%	UNR 70%	95%	NA	NA

CIBMTR, Center for International Blood and Marrow Transplantation; EBMT, European Group for Marrow and Blood Transplantation; MA, myeloablative; NA, not reported; REL, related donor; SGFMTC, Société Française de Greffe de Moelle et de Thérapie Cellulaire; UNR, unrelated donor; .

1.Baccarani, M, et al. Leukemia 2022; 2. Millot F, et al. Bone Marrow Transplantation 2003;32:993-999; 3. Cwynarski K, et al. Blood 2003;102:1224-1231; 4. Arora M, et al. Journal of Clinical Oncology 2009;27:1644-1652; 5. Radich J, et al. Blood 2003;102:31-35; 6. Gratwohl A, et al. Leukemia, 2015;30:562-569; 7. Bacher U, et al. Annals of Hematology 2009;88:1237-1247; 8. Ohashi K, et al. International Journal of Hematology 2014;100:296-306; 9. Chaudhury S, et al. Biology of Blood and Marrow Transplantation 2016;22:1056-1064; 10. Lee S, et al. Hematology 2013;19:63-72; 11. Koenecke C, et al. Bone Marrow Transplantation 2016;59-61; 12. Saussele, S, et al. Blood 2010;115:1880-1885.

HEMATOLOGY

CML 1st CP, allo-SCT outcomes

Study ¹	Registry	interval	N	Median age	Conditioning	Donor	1-year survival	5-year survival	10-year survival
Millot et al. ²	SGFMTC	1982–1998	42	14	MA	REL	87%	73%	73%
Cwynarski et al. ³	EBMT	1985–2001	156	14	NR	REL	78%	72%	70%
Arora et al. ⁴	CIBMTR	1988–2003	3514	36	MA	REL	74%	63%	60%
Arora et al. ⁴	CIBMTR	1988–2003	531	37	MA	UNR	70%	55%	50%
Radich et al. ⁵	Seattle	1995–2000	131	43	MA	REL	91%	NA	NA
Gratwohl et al. ⁶	German Study III	1997–2004	151	38	MA	REL	90%	78%	76%
Gratwohl et al. ⁶	German Study III	1997–2004	148	41	MA	UNR	97%	76%	76%
Bacher et al. ⁷	German Registry	1998–2004	1084	40	MA 62%	REL 61%	67%	64%	64%
Ohashi et al. ⁸	Japanese Registry	2000–2009	531	40	MA 89%	UNR 51%	87%	85%	78%
Chaudury et al. ⁹	CIBMTR	2001–2010	224	24	MA	REL	90%	83%	NA
Chaudury et al. ⁹	CIBMTR	2001–2010	225	24	MA	UNR	80%	68%	NA
Lee et al. ¹⁰	Korean	2001–2012	47	32	MA 77%	UNR 43%	88%	NA	NA
Lee et al. ¹⁰	Korean	2001–2012	50	33	MA 48%	UNR 42%	90%	NA	NA
Koenecke et al. ¹¹	EBMT	2002–2005	193	31	MA	REL	90%	85%	84%
Saussele et al. ¹²	German Study IV	2003–2008	19	35	MA 79%	REL 53%	95%	NA	NA
Saussele et al. ¹²	German Study IV	2003–2008	37	38	MA 65%	UNR 70%	95%	NA	NA

CIBMTR, Center for International Blood and Marrow Transplantation; EBMT, European Group for Marrow and Blood Transplantation; MA, myeloablative; NA, not reported; REL, related donor; SGFMTC, Société Française de Greffe de Moelle et de Thérapie Cellulaire; UNR, unrelated donor; .

1.Baccarani, M, et al. Leukemia 2022; 2. Millot F, et al. Bone Marrow Transplantation 2003;32:993-999; 3. Cwynarski K, et al. Blood 2003;102:1224-1231; 4. Arora M, et al. Journal of Clinical Oncology 2009;27:1644-1652; 5. Radich J, et al. Blood 2003;102:31-35; 6. Gratwohl A, et al. Leukemia, 2015;30:562-569; 7. Bacher U, et al. Annals of Hematology 2009;88:1237-1247; 8. Ohashi K, et al. International Journal of Hematology 2014;100:296-306; 9. Chaudhury S, et al. Biology of Blood and Marrow Transplantation 2016;22:1056-1064; 10. Lee S, et al. Hematology 2013;19:63-72; 11. Koenecke C, et al. Bone Marrow Transplantation 2016;59-61; 12. Saussele, S, et al. Blood 2010;115:1880-1885.

ALLOGENEIC STEM CELL TRANSPLANTATION, AGE, AND TRANSPLANT RELATED MORTALITY (TRM)

3033 HLA-MATCHED PATIENTS

AGE	RELATIVE RISK OF TRM	P-value
< 20 y	1.00	
20-39 y	1.21	0.29
40-49 y	1.48	0.04
50-59 y	1.75	0.004
≥ 60 y	1.84	0.005

CML study IV: outcome of alloSCT patients (n = 84)

Age at diagnosis 37 (16-56)

Population-based data from the Swedish cancer registry

CP1 n. 56, age 43 (21-65)

ASCT, allogeneic stem cell transplantation; AP, accelerated phase; BC, blast crisis; CP, chronic phase, TKI; tyrosine kinase inhibitor. 1. Lübking A, et al. *Bone Marrow Transplantation* 2019;54:1764-74.

OS with high-dose IM, dasatinib and nilotinib vs IM 400mg

Spostiamo l'attenzione sui pazienti che falliscono la terapia con TKIs

Survival with chronic myeloid leukaemia after failing milestones

12 months

Lauseker, M et al. Leukemia **37**, 2231–2236 (2023).

Chronic myeloid leukemia without major molecular response after 2 years of treatment with tyrosine kinase inhibitor

A Bidikian et al Am J Hematol. 2023;98:639-644.

No impact of the use of multiple TKIs prior to SCT

n. 904, alloSCT 2006-2016

Y Chalandon et al, AJH 2023;98:112–121

Transplantation in CML in the TKI era: who, when, and how ?

Accelerated phase (AP)

ELN 2020²⁵

- A patient **presenting** in AP should be treated as a high-risk patient, becoming eligible for <u>HSCT if the response is not optimal</u>

A patient **progressing** to AP during treatment should immediately be considered for HSCT

NCCN guidelines²⁶

- Disease progression to AP while on TKI therapy should be considered for HSCT
- Patients who present with AP at diagnosis should be treated with a TKI, followed by evaluation for allogeneic HSCT based on response to therapy after 3, 6, or 12 months

OS with high-dose IM, dasatinib and nilotinib vs IM 400mg

Transplantation in CML in the TKI era: who, when, and how ?

	Accelerated phase (AP)
F	ELN 2020 ²⁵
-	A patient presenting in AP should be treated as a high-risk patient, becoming eligible for HSCT if the response is not optimal
-	- A patient progressing to AP during treatment should immediately be considered for HSCT
1	NCCN guidelines ²⁶
1	NCCN guidelines ²⁶ Disease progression to AP while on TKI
1	NCCN guidelines ²⁶ • Disease progression to AP while on TKI therapy should be considered for HSCT
1	NCCN guidelines ²⁶ Disease progression to AP while on TKI therapy should be considered for HSCT Patients who present with AP at diagnosis
1	NCCN guidelines ²⁶ Disease progression to AP while on TKI therapy should be considered for HSCT Patients who present with AP at diagnosis should be treated with a TKI, followed by
1	NCCN guidelines ²⁶ Disease progression to AP while on TKI therapy should be considered for HSCT Patients who present with AP at diagnosis should be treated with a TKI, followed by evaluation for allogeneic HSCT based on

CML Risk factors

At d	iagnosis			
•	High ELTS s	score		
•	10–19% bl	<mark>asts</mark> in the p	eripheral blood and/or bone marr	ow ^{ab}
•	≥20% baso	phils in the	peripheral blood	
•	Additional	chromoson	nal abnormalities in Ph+ cells, inclu	ding 3q26.2 rearrangements, monosomy 7, isochromosome
	17q and	complex ka	ryotype	
•	Additional	chromoson	nal abnormalities in Ph+ cells, inclu	ding trisomy 8, 11q23 rearrangements, trisomy 19, trisomy
	21, addit	ional Ph+ (e	vidence of association with diseas	e progression less clear)
•	Clusters of	small mega	karyocytes (including true microm	egakaryocytes similar to those seen in myelodysplastic
	syndrom	es), associa	ted with significant reticulin and/or	collagen fibrosis, which is best assessed in biopsy sections.
a.	The finding	g of bona fic	e lymphoblasts in the peripheral b	ood or bone marrow (even if <10%) is consistent with the
	diagnosis	s of blast ph	ase	
b.	≥20% blast	ts in the per	ipheral blood or bone marrow, or a	n infiltrative proliferation of blasts in an extramedullary site,
	is diagno	stic of blast	phase	
L				
ELTS	score	0.0025	$\times (age/10)^3$	LOW-RISK: < 1.5680
		+ 0.0615	× spleen size	Intermediate-risk: 1.5080- 2.2185
		+ 0.1052	× peripheral blood blasts	High-fisk: > 2.2185
		+ 0.4104	× (platelet count/1000) ^{-0.5}	
Eme	erging on tre	atment		
Resi	stance to TK	as defined	by ELN 2020, including loss of price	r responses, emergence of ACA and BCR::ABL1 kinase
dom	nain mutatio	ns.		

Transplantation in CML in the TKI era: who, when, and how ?

Chronic phase (chP)

ELN 2020²⁵

- Disease resistant or intolerant (suboptimal response to 2 or more TKIs)
- For the very rare patient with inadequate recovery of normal hematopoiesis
- Resistance to 2G-TKIs (first or second line) ponatinib or experimental agent
- Failure to respond to ponatinib after 3 months' treatment
- Emergence of high-risk cytogenetics: observe closely, consider intensification of treatment (ponatinib, early allo-SCT)

NCCN guidelines²⁶

 If TKI-resistant disease BCR-ABL1 (IS) >10% at >3 months, switch to alternate TKI and evaluate for HSCT

High risk additional chromosomal aberrations herald advanced disease and predict survival probability: CML IV cohort

High risk additional chromosomal aberrations herald advanced disease and predict survival probability: CML IV cohort

Total CML 1536 ↓ Patients with at least one evaluable cytogenetic analysis 1510 25/123 at diagnosis 66/123 during the course of the disease

Low-risk — Hematological and clinical abnormalities at ACA appearance

42/138 (30%) of alloSCT@ CML IV for the 6% ACA patients:

26/42 in AP/BP2 yrs OS 44%13/42 in CP2 yrs OS 77%

High risk additional chromosomal aberrations herald advanced disease and predict survival probability: CML IV cohort

Transplantation in CML in the TKI era: who, when, and how ?

Chronic phase (chP)

ELN 2020²⁵

- Disease resistant or intolerant (suboptimal response to 2 or more TKIs)
- For the very rare patient with inadequate recovery of normal hematopoiesis
- Resistance to 2G-TKIs (first or second line) ponatinib or experimental agent
- Failure to respond to ponatinib after 3 months' treatment
- Emergence of high-risk cytogenetics: observe closely, consider intensification of treatment (ponatinib, early allo-SCT)

NCCN guidelines²⁶

 If TKI-resistant disease BCR-ABL1 (IS) >10% at >3 months, switch to alternate TKI and evaluate for HSCT

Transplantation in CML in the TKI era: who, when, and how ?

С	hronic phase (chP)	
EJ	N 2020 ²⁵	
·	Disease resistant or intolerant (suboptimal response to 2 or more TKIs)	
-	For the very rare patient with inadequate recovery of normal hematopoiesis	
	Resistance to 2G-TKIs (first or second line) ponatinib or experimental agent Failure to respond to ponatinib after 3 months' treatment	
	Emergence of high-risk cytogenetics: observe closely, consider intensification of treatment (ponatinib, early allo-SCT)	
N	CCN guidelines ²⁶	
	If TKI-resistant disease <i>BCR-ABL1</i> (IS) >10% at >3 months, switch to alternate TKI and evaluate for HSCT	

Trends in Survival after Allogeneic HCTs, in the US, 2001-2021

PACE (Ponatinib in multiresistant CML) PFS and OS in the Overall Population

n. 233, 61% res/int ≧3 TKIs

HEMATOLOGY

PACE (Ponatinib in multiresistant CML) OS^a by cytogenetic response at 3 months

• Patients with cytogenetic responses of MCyR or CCyR were significantly more likely to have improved OS at 4 years compared with patients who did not achieve a cytogenetic response

^a Patients who discontinued were followed approximately every 12 weeks for survival; patients without an event at the time of the analysis were censored at last contact CCyR, complete cytogenetic response; MCyR, major cytogenetic response

Autoregulation of ABL1 kinase occurs when a myristoyl group at the N-terminus of ABL1 binds to the myristoyl-binding pocket

close (inactive) and open (active) conformation

From Hughes TP, et al. N Engl J Med. 2019;381(24):2315-2326. Copyright © 2019 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

Preliminary safety and efficacy of ELVN-001, a selective active site inhibitor of BCR::ABL1 in CML

ELVN-001:

- Selectively inhibits ABL with low off target activity against other kinases
- Maintains activity against T315I and other BCR::ABL1 mutations known to confer resistance to asciminib

Patient population:

- ≥18 years (≥19 years in Korea) with BCR::ABL1-positive CP-CML, ± T315I mutation
- Intolerant to, failed, or not a candidate for available therapies for CML
- ECOG PS 0-2
- Bone marrow transplantation allowed only if ≥6 months prior

Study design:

- Ph. 1a (N=50 max.): Dose escalation 10/20/40/80/120 mg QD; Ph. 1b (N=60): Dose expansion, stratified by *T3151* status
- Primary endpoint: Dose-limiting toxicities, AEs, clinically significant lab and ECG abnormalities
- Secondary endpoints (Ph. Ia): PK parameters, molecular response

Leukemia

www.nature.com/leu

PERSPECTIVE OPEN

Questions concerning tyrosine kinase-inhibitor therapy and transplants in chronic phase chronic myeloid leukaemia

Michele Baccarani (D^{1,2,7}, Francesca Bonifazi (D^{1 \Big]}, Simona Soverini (D², Fausto Castagnetti^{1,2}, Gabriele Gugliotta¹, Wael Saber^{3,4}, Noel Estrada-Merly³, Gianantonio Rosti⁵ and Robert Peter Gale (D⁶)

© The Author(s) 2022

«We suggest transplants should be more often considered in the metric when counseling people with CML»

«The question of who should receive a transplant in CP is complex and controversial.»

LMC, perché rinviare il trapianto

Gianantonio Rosti, MD Scientific Direction IRCCS/SIRHHC Scientific Institute for Research, Hospitalization and Health Care «Dino Amadori» – Meldola (FC), Italy

DO WE NEED TO RECONSIDER USE OF TRANSPLANT IN CHRONIC PHASE CML?

Rates of <u>cure</u> are higher in persons receiving a transplant vs. TKIs (few patients will reach TFR)

HOWEVER:

- (1) **few transplants** have been done for CML recently, limiting the certainty of estimating outcomes;
- (2) selection **biases favoring transplants** including younger **age, better performance score and fewer comorbidities** in transplant recipients compared with persons receiving TKIs;
- (3) selection biases against transplant recipients who are more likely to have had a worse prognosis at diagnosis or soon thereafter compared with those receiving only TKI therapy;
- (4) the almost **20% 1-year mortality** associated with transplants and risk of transplant-related complications such as **chronic GvHD**

WHO 2022 CML

2 phase disease

Diagnosis: CP (with clinical and biological risk factors) BP (>20% blasts)

On therapy: CP (Remission status according to ELN) BP (>20% blasts)

AP definition in TKI era less important.

Chronic myeloid leukemia without major molecular response after 2 years of treatment with tyrosine kinase inhibitor

Overall survival (OS) and CML-related overall survival (CML-OS) of patients aged ≥60 years at diagnosis without MMR after two years of TKIs

SCT for CML in Europe

EBMT registry

СЕВМТ Allogeneic HSCT in Europe 2016 1st HSCT

SCT for CML in Europe

CML allo HSCT: 1990-2020

More patients in advanced phase than in CP are transplanted world wide, underlying the importance of optimizing outcome by improving the timing of HSCT

EBMT registry

DO WE NEED TO RECONSIDER USE OF TRANSPLANT IN CHRONIC PHASE CML?

- There are several time- dependent predictive and prognostic models and scores which enable physicians to estimate the likelihood of success of TKI therapy in achieving TFR reasonably early after starting TKI therapy.
- In potential transplant candidates, physicians and patients must choose between probable lifetime TKI therapy with attendant medical, physical and psychological costs versus likelihood of success and risks of a transplant.

The issue is not whether one or the other therapy is better, but which therapy is more appropriate for different persons at different times after CML diagnosis and after observing response to TKI therapy

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.org

Maintenance Tyrosine Kinase Inhibitors Following Allogeneic Hematopoietic Stem Cell Transplantation for Chronic Myelogenous Leukemia: A Center for International Blood and Marrow Transplant Research Study

Post-SCT maintenance

390 adult patients with CML who underwent transplantation between 2007 and 2014 and received maintenance TKI following HCT (n = 89) compared with no TKI maintenance (n = 301)

- Results unchanged in multivariate analysis and were not modified by disease status before transplantation.
- In conclusion, NO significant impact of maintenance TKI therapy on clinical outcomes.
- The optimal approach to TKI administration in the post-transplantation setting in patients with CML remains undetermined.

Incidence of GVHD after DLI (n=500)

		GVHD p	ost DLI
		No	Yes
Response	No	24%	8%
(CCyR/CMR)	Yes	32%	36%

The Role of Donor Lymphocyte Infusion (DLI) in Post-Hematopoietic Cell Transplant (HCT) Relapse for Chronic Myeloid Leukemia (CML) in the Tyrosine Kinase Inhibitor (TKI) Era

A total of 215 HCT recipients relapsed and were analyzed in the following groups: (1) TKI alone (n = 128) (2) TKI with DLI (n = 48) (3) DLI without TKI (n = 39)

Time from 30 days post relapse to death/lost follow-up (In Months)

Take home-messages

WHO and WHEN?

• ELN RECOMMENDATIONS / EBMT and HCI SCORE

WHICH DONOR / SOURCE?

• Any, but HLA-id sib better / Marrow better than blood

WHICH CONDITIONING?

• Myeloablative first option

TKI MAINTENANCE AFTER TRANSPLANT?

• Benefit undetermined

RELAPSE AFTER SCT?

• preferably TKI alone (+/- DLI)

PERSPECTIVE: TRANSPLANT IN 1ST CP IN PATIENTS NOT CANDIDATE FOR TFR?

DOI: 10.1002/ajh.24793

RESEARCH ARTICLE Am J Hematol. 2017;92:902-908. WILEY AJH

Clinical impact of pretransplant use of multiple tyrosine kinase inhibitors on the outcome of allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia

237 pts diagnosed in CP between 2001 and 2012 in Japan, which received allo-SCT

Outcome	Factors		HR	95% CI	P-value
RI	Disease status at SCT	CP1	1		
		CP2	2.163	0.858-5.455	.100
		CP3-	1.110	0.158-7.784	.920
		AP	2.378	0.902-6.269	.080
		BC	5.299	2.385-11.770	<.001
NRM	Pretransplant TKI Number	TKI=1/2	1		
NRM	Pretransplant TKI Number	TKI=1/2 TKI=3	1 2.554	1.185-5.504	.017
NRM	Pretransplant TKI Number Male recipient/Female donor	TKI=1/2 TKI=3 no	1 2.554 1	1.185-5.504	.017
NRM	Pretransplant TKI Number Male recipient/Female donor	TKI=1/2 TKI=3 no yes	1 2.554 1 2.107	1.185-5.504 1.022-4.346	.017 .044
NRM	Pretransplant TKI Number Male recipient/Female donor Age at SCT	TKI=1/2 TKI=3 no yes -49	1 2.554 1 2.107 1	1.185-5.504 1.022-4.346	.017 .044

 TABLE 3
 Multivariate analysis of variables affecting RI and NRM

"TKI = 3 is a significant factor for survival after allo-HSCT besides disease progression and patient's age. Allo-HSCT could be considered for young patients with CML showing resistance to second-line TKI therapy who did not have disease progression and who have an appropriate donor" DOI: 10.1002/ajh.24793

RESEARCH ARTICLE Am J He

Am J Hematol. 2017;92:902-908.

Clinical impact of pretransplant use of multiple tyrosine kinase inhibitors on the outcome of allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia

Days after Transplantation